Non-stationary long memory parameter estimate based on wavelet

نویسندگان

  • Junfang Hou
  • Lili Huang
چکیده

In this paper, based on the theory of wavelet transform, presents several new estimation method of time varying long memory parameters, and gives the consistency and asymptotic properties of estimators of these new methods. Finally, this paper studies the behavior of small samples of non-stationary long memory process, gives the reference solution of some factors selected which can affect the accuracy of estimate such as wavelet scale et al. At the same time, this paper compares the advantages and disadvantages of various estimation methods, and proves the effectiveness and robustness of the new methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet estimation of a local long memory parameter

There are a number of estimators of a long-memory process' long-memory parameter when the parameter is assumed to hold constant over the entire data set, but currently no estimator exists for a time-varying long-memory parameter. In this paper we construct an estimator of the time-varying long-memory parameter that is based on the time-scale properties of the wavelet transform. Because wavelets...

متن کامل

On the Spectral Density of the Wavelet Coefficients of Long Memory Time Series with Application to the Log-regression Estimation of the Memory Parameter

In recent years, methods to estimate the memory parameter using wavelet analysis have gained popularity in many areas of science. Despite its widespread use, a rigorous semi-parametric asymptotic theory, comparable to the one developed for Fourier methods, is still missing. In this contribution, we adapt to the wavelet setting the classical semi-parametric framework introduced by Robinson and h...

متن کامل

Wavelet Estimation of the Long Memory Parameter for Hermite Polynomial of Gaussian Processes

We consider stationary processes with long memory which are non–Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long–memory parameter. We show that the limit is not Gaussian but can be expressed using the non–Gaus...

متن کامل

A Wavelet Whittle Estimator of the Memory Parameter of a Non-stationary Gaussian Time Series

We consider a time series X = {Xk, k ∈ Z} with memory parameter d0 ∈ R. This time series is either stationary or can be made stationary after differencing a finite number of times. We study the “Local Whittle Wavelet Estimator” of the memory parameter d0. This is a wavelet-based semiparametric pseudo-likelihood maximum method estimator. The estimator may depend on a given finite range of scales...

متن کامل

Central Limit Theorem for the Robust Log-regression Wavelet Estimation of the Memory Parameter in the Gaussian Semi-parametric Context

In this paper, we study robust estimators of the memory parameter d of a (possibly) non stationary Gaussian time series with generalized spectral density f . This generalized spectral density is characterized by the memory parameter d and by a function f which specifies the short-range dependence structure of the process. Our setting is semi-parametric since both f and d are unknown and d is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014